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Abstract

In this paper we present a preconditioned multi-domain algorithm applied to the elliptic kernels arising from the

spectral collocation of the incompressible Navier–Stokes equations in three space dimensions with one homogeneous

direction. The technique, based on the iterative solution of the Schur complement matrix, allows for efficient numerical

solution of the operators in complex geometries consisting of a collection of non-overlapping rectangular subdomains.

The method is shown to be nearly optimal in terms of condition number behavior in a double path of refinement

strategy, i.e. whenever both the number of Legendre modes and the number of subdomains are significantly increased.

It is thus well suited for engineering applications in the fields of direct numerical simulation and large eddy simulation

of turbulence.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Direct numerical simulations (DNSs) of turbulent flows have been mainly carried out in the low Rey-

nolds number range [1–4], and, as today, and despite the tremendous push in the development of new
hardware, the extension to higher and more realistic flow regimes appears troublesome [5]. There is a

general consensus, instead, that large eddy simulations (LESs) will allow for a significant increase of the

Reynolds number range, and thus bear the promise of a considerable turbulence know-how improvement.

This explains the huge efforts devoted to the development of more and more sophisticated (and expensive)

subgrid scale models [6,7]; unfortunately none of the available models is capable of correctly describing in a

statistical sense the near wall features, and most noticeably the existence of the relevant coherent structures

responsible for turbulence production [8]. If the anisotropic near wall scales cannot be properly modeled the
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only remaining alternative is to resolve them, a fact that requires appropriate numerical tools. Higher order

methods (spectral or h–p type finite element methods) offer significant advantages over low order finite

difference or finite volume methods both in terms of computational efficiency and numerical errors control.
Multi-domain spectral methods combine the geometric flexibility of h–p type finite element methods with

the exponential error decay typical of spectral discretization [9,10]. The spectral element method (SEM) of

Patera [11] and Maday and Patera [12] is one such example which heavily relies on variational projection

operators and Gauss numerical quadrature to generate the discrete equations. This set of equations con-

stitute a large global system which requires efficient iterative preconditioned procedures [13]. The spectral

element method offers efficient preconditioned solvers that were applied to CFD problems, e.g. for example

the papers by Fischer and Tufo [14,15] on large scale parallel applications and the domain decomposition

solvers proposed by Rønquist [16,17].
Non-variational multi-domain spectral methods based on explicit patching techniques are also available

[18]. In the non-variational approach a C1 continuity condition across the elemental boundaries is strongly

enforced, and distinction is made between interior and interface unknowns. In between the two families of

methods is the projection decomposition method (PDM) of Gervasio et al. [19], where, in a variational

context (like in [11]), the original problem is decoupled into boundary value problems (one in each sub-

domain) and a problem on the interfaces between subdomains. In the PDM the equation expressing the

continuity of the co-normal derivatives across the interface between the subdomains (Steklov–Poincar�e
interface) is solved by a Galerkin method using well conditioned basis. In [19] it has been shown that the
above formulation is computationally highly efficient and leads to a linear system with condition number

independent on the degree of the spectral approximation and mildly dependent on the number of subdo-

mains. Applications of the PDM to the Navier–Stokes equations can be found in [20]. The non-conforming

discretization of [13], which is essentially based upon the mortar element method (MEM) of Bernardi et al.

[21], is closer to the PDM than to the SEM of Patera. The main difference is that the continuity condition

on the interfaces is equivalent to collocation enforcement in the conformal SEM and obeys an integral

matching relation in the MEM (viz. the solution does not belong to H1ðXÞ). It has been shown that the

pointwise matching condition of SEM is not optimal when enforced in the MEM approach [21].
The present multi-domain method (MDM) is not a discontinuous Galerkin (dG) method because it is

not set up in a flux formulation. However, the present methodology has some connections with the dG

approach and the reader who is interested in this topic should consult the paper by Arnold et al. [22] that

presents a unified framework to describe the various types of discontinuous methods. The multi-domain

spectral method enforces a weak C1 continuity between the sub-domains while dG allows the jumps in

numerical fluxes. The imposition of consistency, boundedness and stability of the dG approximations

makes them close albeit different from MDM.

The spectral multi-domain algorithm presented herein shares similarities with [19] in the following sense:
the original elliptic problem is split into two separate problems, one for the interface unknowns and the

other for the inner values. However, unlike [19] where the equivalent Schur complement matrix is designed

to be well conditioned in some sense, we construct algebraic (one and two levels) preconditioners for the

discrete counterpart of the Steklov–Poincar�e operator (Schur matrix) exhibiting nearly optimal behaviors

of the underlying iterative solver.

In simple geometries one level preconditioners of the Schur complement matrix are shown to be rea-

sonably effective, in agreement with the findings of Couzy and Deville [23]. Conversely, in complex envi-

ronments, the two level class of preconditioners [24], largely used in the finite element or finite difference
framework, are found truly superior with respect to all challengers. The algorithms presented in this work

share similarities with the optimal iterative substructuring methods of Pavarino and Widlund [25], and

Casarin [26], along with the overlapping Schwarz techniques of Pavarino and Warburton [27], and prove

comparable both in terms of performance and computational costs for shape regular subdomains (nearly

isotropic grids). Here distinction has to be made between optimality and scalability; while the former refers
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to the boundness of the condition number with the polynomials degree of the underlying approximation,

the latter refers to the independence upon the number of subdomains.

The method is shown to be quasi-optimal and scalable in the isotropic case (in good agreement with the
theoretical and numerical estimates reported in [25,26]). In the anisotropic case we are not aware of any

quantitative results, although this is a frequently encountered scenario in wall bounded turbulent flows; our

data indicate that present algorithms are optimal and quasi-scalable. Thus the methods are shown to be

fully competitive with the PDM in the isotropic model problems, and to overwhelm it in presence of strong

anisotropies.

Evidences of the above claims are provided comparing the performances of the methods on large scale

model problems, viz. the Helmholtz and Poisson equations arising from the discretization of the semi-

implicit incompressible Navier–Stokes equations in a time splitting formulation.
Direct and large eddy simulations of turbulent channel flow are carried out to validate the proposed

methodology on highly anisotropic subdomains partitions.

The outline of the paper is as follows. In Section 2 we present the temporal and spatial discretization of

the governing equations. In Section 3 the weak Legendre algorithm for the elliptic equations in a multi-

domain framework is discussed. Issues concerning the numerical solution of the elliptic kernel and several

algebraic preconditioners are presented in Section 4. Results both for model problems and full Navier–

Stokes equations are provided in Section 5. Conclusions are given in Section 6.
2. Governing equations

In this work we are primarily interested in the discretization of the unsteady, incompressible Navier–
Stokes equations in a complex domain ~X � R3, with smooth boundaries o~X

oui
ot

þ uj
oui
oxj

¼ � op
oxi

þ 1

Re
o2ui
ox2j

þ fi in ~X;

ouj
oxj

¼ 0 in ~X;

ð1Þ

where ðx1; x2; x3Þ ¼ ðx; y; zÞ and t are the space and time coordinates, ui are the non-dimensional velocity

components, p is the non-dimensional pressure, and fi are external force components. The Reynolds

number Re ¼ t‘=m is based on the kinematic viscosity m and appropriate velocity and length scales (t and ‘).
Eqs. (1) are subject to a suitable set of initial and boundary conditions:

uið�; 0Þ ¼ u0i ð�Þ in ~X;

uið�; tÞ ¼ ~uið�Þ on o~X;
ð2Þ

with u0i ð�Þ divergence free.

We next discuss the time discretization of (1), which is carried out with the second order projection

scheme of Van Kan [28]. With the simulation of wall bounded turbulent flows in mind, for which the

resolution requirements are necessarily very strict, we have chosen to treat the viscous terms implicitly to

overcome the severe restriction of the time step that arises from the grid spacing in the wall normal di-

rection. Thus the linear parabolic operator is approximated with a Crank–Nicolson scheme, while the non-

linear terms are treated explicitly with a second order Adams–Bashforth scheme. Let uni be the approxi-

mation to uið�; nDtÞ at time level nDt, and vi the intermediate velocity vector field of the time splitting
method whose curl approximates the curl of ui, up to OðDtÞ2. With these assumptions, and denoting with

Ni the non-linear convective terms, the semi-discrete form of (1) reads
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vi � uni
Dt

� 1

2Re
o2ðvi þ uni Þ

ox2j
¼ � opn

oxi
� 3

2
Nn

i þ
1

2
Nn�1

i ; ð3Þ
unþ1
i � vi
Dt

¼ � 1

2

opnþ1

oxi

�
� opn

oxi

�
; ð4Þ
ounþ1
j

oxj
¼ 0: ð5Þ

The above formulation introduces a vortex sheet of strength OðDtÞ2 at the boundaries which vanishes in the

steady state. It is easy to see that vi can be obtained from (3) by solving three scalar decoupled Helmholtz

equations, while ðunþ1
i ; pnþ1Þ require an additional Poisson equation obtained applying the divergence op-

erator to (4).
We recall that since the velocity and pressure are decoupled from each other, the space discretizations

for the velocity and pressure can be chosen independently, and they do not need to satisfy the Babuska–

Brezzi condition [29]. Thus we have used equal order Legendre polynomials for both velocity and

pressure. The pressure Poisson equation is solved with homogeneous Neumann boundary conditions on

pnþ1 � pn.
3. The elliptic kernel

In this section we develop a spectral weak Legendre multi-domain algorithm for the solution of elliptic

equation, representative of one of the scalar Helmholtz-like problems mentioned in the previous section.

Let us consider the following problem:

� o2u
ox2j

þ au ¼ f in ~X;

u ¼ gD on o~XD;

ou
oxj

nj ¼ gN on o~XN ;

ð6Þ

with ~X an open connected set ~X � R3, o~X ¼ o~XD [ o~XN , o~XD \ o~XN ¼ ;, ni the ith component of the

outwarding normal on o~X, and aP 0 a real constant. In the following, for the sake of brevity, we will only
consider the homogeneous Dirichlet problem (i.e. o~X ¼ o~XD and gD ¼ 0). The non-homogeneous case is

straightforward in the weak collocation approach; the Neumann case is easily embodied in the multi-do-

main formulation, i.e. there is no conceptual nor practical difference between a connecting boundary and

o~XN as it will be discussed later on.

Assuming the source term f 2 L2ð~XÞ, the equivalent weak formulation of (6), is

find u 2 H1
0ð~XÞ

such that aðu; vÞ ¼ ðf ; vÞL2ð~XÞ 8v 2 H1
0ð ~XÞ;

(
ð7Þ

where H1
0ð~XÞ is the subspace of H1ð~XÞ of the functions whose trace at the boundary is zero; H1ð~XÞ is the

space of functions belonging to L2ð~XÞ such that their first order distributional derivatives belong to L2ð~XÞ
equipped with the scalar product
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aðu; vÞ ¼
Z
~X

ou
oxj

ov
oxj

�
þ auv

�
dX 8u; v 2 H1

0ð~XÞ ð8Þ

and

ðu; vÞL2ð~XÞ ¼
Z
~X
uv dX 8u; v 2 L2ð~XÞ: ð9Þ

Suppose now that the domain ~X is partitioned into Md non-overlapping subdomains ~Xi

~X ¼ [Md
i¼1

~Xi; ~Xi \ ~Xj ¼ ; for i 6¼ j; ð10Þ

with ~Xi a closed parallelepipedic domain.

Following the standard domain decomposition technique of variational problems [19], we define the

interface C as follows:

C ¼ ð~X n ~X0Þ n o~X with ~X0 ¼
[Md

i¼1

~Xi; ð11Þ

and introduce the additive decomposition of the solution of problem (7)

u ¼ u0 þ ~u: ð12Þ

In the above decomposition u0 2 H1
0ð~X0Þ and ~u 2 H1

0ð~XÞ are solutions of the following problems:

Problem P1 : aðu0; v0Þ ¼ ðf ; v0ÞL2ð~XÞ 8v0 2 H1
0ð~X0Þ; ð13Þ

Problem P2 : að~u; vÞ ¼ ðf ; vÞL2ð~XÞ � aðu0; vÞ 8v 2 H1
0ð~XÞ: ð14Þ

The solution u0 will deal with the interior unknowns of the various subdomains while ~u will be related to the
interface variables.

Let us assume the x3 ¼ z-direction to be homogeneous. Denoting with Lz the periodic length in the z-
direction and with X an arbitrary smooth two-dimensional region of R2, we can express the physical domain

as ~X ¼ X� ½0; Lz�. Furthermore, let us define ~Xi ¼ Xi � ½0; Lz�where Xi are closed rectangles, with dimension

Lx and Ly in x- and y-direction, respectively, having either common sides or common vertices with each

neighbor and X0 ¼
SMd

i¼1 Xi. Following the blended Fourier and Legendre approximation [30], we represent

each of the full three-dimensional scalar functions involved in Problem P1 and Problem P2 as follows:

uðx; y; zÞ ¼
XNz=2�1

k¼�Nz=2

ukðx; yÞeIbkz; ð15Þ

where b ¼ 2p=Lz denotes the wave number and I ¼
ffiffiffiffiffiffiffi
�1

p
. Such a position allows us to reformulate both

Problems P1 and P2 as a set of Nz uncoupled two-dimensional problems in terms of uk0 2 H1
0ðX0Þ and

~uk 2 H1
0ðXÞ as follows:

Problem P1 : akðuk0; v0Þ ¼ ðf k; v0ÞL2ðXÞ 8v0 2 H1
0ðX0Þ; ð16Þ

Problem P2 : akð~uk; vÞ ¼ ðf k; vÞL2ðXÞ � akðuk0; vÞ 8v 2 H1
0ðXÞ ð17Þ

in which

akðu; vÞ ¼
Z
X

ou
oxj

ov
oxj

�
þ �kuv

�
dX 8u; v 2 H1

0ðXÞ; ð18Þ
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with �k ¼ aþ ð2pk=LzÞ2. In the subsequent discussion, for the sake of clarity, we will drop out the super-

script k.
Spatial discretization proceeds by restricting u0 and ~u to compatible finite dimensional spaces

XN � H1
0ðX0Þ and ~XN � H1

0ðXÞ, respectively, and using appropriate quadrature to approximate the bilinear

forms involved in (13) and (14).

We make use of the following notation: let us define the space

PN ;Md ðXÞ ¼ f/ 2 L2ðXÞ : /jXi
2 PN ðXiÞg; ð19Þ

where PN ðXiÞ denotes the tensor product space of all polynomials of degree 6Nx in the x direction and
6Ny in the y direction. In what follows we assume, for the sake of clarity, that the pair ðNx;NyÞ is equal for
all subdomains. Having denoted with ðnk; glÞ, 06 k6Nx; 06 l6Ny , the ðNx þ 1ÞðNy þ 1Þ nodes of the

Gauss–Lobatto–Legendre (GLL) integration formula in the reference domain ½�1; 1� � ½�1; 1�, it is

straightforward to define the pair ðxik; yilÞ, for each domain, by an affine transformation mapping of

½�1; 1� � ½�1; 1� onto Xi. Moreover, let ckl ¼ ckcl be the quadrature weights associated to the nodes ðnk; glÞ,
and xi

kl ¼ ckl �measðXiÞ=4 the weights corresponding to domain Xi. With the above notations, following

the spectral collocation technique, we define:

XN ¼ H1
0ðX0Þ \ PN ;Md ðXÞ;

~XN ¼ H1
0ðXÞ \ PN ;Md ðXÞ:

Therefore, problems (13) and (14) can be rewritten as follows:

Find uN0 2 XN

such that aGLLðuN0 ; vN0 Þ ¼ ðf ; vN0 ÞGLL 8vN0 2 XN ;

�
ð20Þ
Find ~uN 2 ~XN

such that aGLLð~uN ; vN Þ ¼ ðf ; vNÞGLL � aGLLðuN0 ; vN Þ 8vN 2 ~XN ;

�
ð21Þ

where aGLLð�; �Þ and ð�; �ÞGLL represent the Gauss–Lobatto–Legendre quadrature of the inner product in

H1ðXÞ and in L2ðXÞ, given by (8) and (9), respectively.

In the present paper we have chosen as basis for PN ðXiÞ, the tensor product of the one-dimensional

Gauss–Lobatto Lagrangian interpolant in both x and y directions. Thus, within each subdomain Xi, any

function belonging to XN and ~XN can be represented in terms of the following basis:

hkðxÞhlðyÞ; k
�

¼ 1; . . . ;Nx � 1; l ¼ 1; . . . ;Ny � 1
�
; ð22Þ
hkðxÞhlðyÞ; k
�

¼ 0; . . . ;Nx; l ¼ 0; . . . ;Ny

�
; ð23Þ

where hkðxÞ and hlðyÞ are the one-dimensional Lagrangian interpolants in x and y directions, respectively.

Taking into account the space basis definition (22) and owing to the exactness of the Gauss–Lobatto–

Legendre integration formula, problem (20) becomes�
� DuN ;i

0 ðxik; yilÞ þ �uN ;i
0 ðxik; yilÞ

�
xi

kl ¼ f ðxik; yilÞxi
kl 8ðxik; yilÞ 2 Xi; ð24Þ

uN ;i
0 ðxik; yilÞ ¼ 0 8ðxik; yilÞ 2 oXi: ð25Þ

As far as problem (21) is concerned, the chosen span of ~XN given by (23) implies the following algebraic

formulation:h
� D~uN ;iðxik; yilÞ þ �~uN ;iðxik; yilÞ

i
xi

kl ¼ f ðxik; yilÞxi
kl �

�
� DuN ;i

0 ðxik; yilÞ þ �uN ;i
0 xik; y

i
l

	 
�
xi

kl 8ðxik; yilÞ 2 Xi;

ð26Þ
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uN ;iðxik; yilÞ ¼ 0 8ðxik; yilÞ 2 oXi \ oX; ð27Þ
XMi
kl

j¼1

xj
kl

h(
� D~uN ;jðxik; yilÞ þ �~uN ;j xik; y

i
l

	 
i
þ fjkl

o~uN ;j

on

¼ f ðxik; yilÞx
j
kl � xj

kl

�
� DuN ;i

0 ðxik; yilÞ þ �uN ;i
0 xik; y

i
l

	 
�
� fjkl

ouN ;j
0

on

)
8ðxik; yilÞ 2 oXi \ C; ð28Þ

where o � =on is the normal derivative, Mi
kl the number of subdomains sharing the point ðxik; yilÞ with the

domain Xi, and

fkl ¼
ck � Lx=2 if k ¼ 0 or Nx 8l ¼ 0; . . . ;Ny ;
cl � Ly=2 if l ¼ 0 or Ny 8k ¼ 0; . . . ;Nx

�
ð29Þ

having dropped the superscript j. Obviously, Mi
kl ¼ 4 for interior corner configurations, and Mi

kl ¼ 2 or

Mi
kl ¼ 1 for those subdomain setup involving Neumann boundary conditions; note that in case of Dirichlet

boundary conditions, Mi
kl can either be zero or one.

Taking (24) into account, it follows that equation (26) can be rewritten as:h
� D~uN ;iðxik; yilÞ þ �~uN ;i xik; y

i
l

	 
i
xi

kl ¼ 0 8ðxik; yilÞ 2 Xi: ð30Þ

Problem (24) and (25) is nothing other than the solution of Md decoupled elliptic problems (for each
subdomain) with homogeneous boundary conditions, that can be efficiently and conveniently solved with

the matrix diagonalization technique [31].

Concerning problem (30), (27) and (28), the elimination of the known boundary values leads to the

following algebraic system:

H11 . . . 0 H1C

. . . . . . . . . . . .
0 . . . HMdMd HMdC

HC1 . . . HCMd HCC

2
664

3
775

u1
. . .
uMd

uC

2
664

3
775 ¼

0

. . .
0

qC

2
664

3
775 ð31Þ

in which we have denoted with: ui the nodal values in Xi (only internal nodes) and uC the interface values;

Hii the discretized Helmholtz operator on the subdomain Xi; HiC the coupling between the unknowns

defined in Xi and the interface C; HCi the coupling between the unknowns defined on C and the subdomain

Xi; HCC the coupling among the unknowns belonging to C; qC the source term depending on the interface

values of u0 and f , given by the r.h.s. of (28).
The block matrices Hii are symmetric by construction as mentioned in [19]; alsoHiC equalsHCi since they

all come from the spectral discretization of an elliptic, coercive, regular, and uniform problem that is self-

adjoint [32].
4. Solving the elliptic system

Elimination of the variables at interior nodes leads to following system (Schur complement):

HCC

 
�
XMd

HCiH
�1
ii HiC

!
uC � SuC ¼ gC: ð32Þ
i¼1
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The Schur complement problem (32), involving the interface values, can be solved either by direct method

or by iterative procedure. For the class of problems we are concerned with, the construction and factor-

ization of S is impractical both in terms of storage (matrix S is dense and large since it grows like
ðMd � ðNx þ NyÞÞ2) and computational complexity. Thus iterative approaches not requiring the explicit

construction of S are preferable. Although the condition number of the Schur complement matrix S is

smaller than the condition number of the matrix involved in the original system (31), a preconditioner in the

iterative procedure is imperative [33]. Since S is symmetric it’s natural to consider the Conjugate Gradient

(CG) method as the baseline solver. Alternatively one may prefer to apply a preconditioned version of CG

(PCG) through the introduction of a suitable matrix M. We recall that in PCG, or in the unpreconditioned

version, the action of S onto u is computed through a global sum of matrix–vector products each of which

is performed locally at subdomain level [34,35].
Together with the classical point Jacobi (PJ) and block Jacobi (BJ) preconditioner (like in [23]), we

consider two preconditioners, belonging to the additive two level class, which can be written as the sum of

two matrices taking into account local and global components:

M ¼ Mglob þMloc: ð33Þ

This class of preconditioners has been successfully used in conjunction with finite elements and finite dif-

ferences methods (see, among many others [36,35]). Depending upon the size of both Mglob and Mloc it may

be convenient to invert and store M or to iteratively compute it.

Note that both the Point Jacobi and Block Jacobi preconditioners can be interpreted by means of (33)

with Mglob ¼ 0, Mloc ¼ MPJ and Mloc ¼ MBJ, respectively. In this paper we propose to use a similar tech-
nique for conforming spectral collocation multi-domain methods.

Let us begin with some nomenclature. Let ne be the total number of edges and nv the number of

vertices. We define, out of the set of interface collocation points belonging to C, three sub-sets Ek, _Ek

(k ¼ 1; . . . ; ne) and Vl. The set Ek contains all nodes belonging to the kth edge, _Ek all but the end nodes of

the kth edge, and Vl (l ¼ 1; . . . ; nv) the individual vertices. Assuming for the sake of clarity Nx ¼ Ny ¼ N ,

the dimension of the space where the Schur complement is defined ðUÞ is ns ¼ ne � ðN � 2Þ þ nv (i.e.

U � Rns ). Let us further introduce a coarse space U0, a q-dimension subspace of U (with q6 ns) and a

restriction operator R0:

R0 : u 2 U � Rns ! u0 2 U0 � Rq: ð34Þ

With the above definitions, the global preconditioner Mglob can be written in general terms as

Mglob ¼ RT
0A

�1
0 R0; ð35Þ
where

A0 ¼ R0SR
T
0 : ð36Þ

Depending on the particular choice of both U0 and R0, several global preconditioners can be built. In the

present paper we have chosen as U0 the vertex based coarse space (whose dimension q is the number of

vertices nv) and as R0 the flat restriction operator [37]. Such a global preconditioner, introduced in the finite

difference and finite element context by Carvalho et al. [37], is closely related to the global part of the

preconditioner first introduced by Bramble et al. [36], in which the matrix A0 represents the coarse grid

approximation of the original elliptic operator. It has been shown [37] that the global coupling expressed by

(35) together with definition (36) offers performances similar to those of the original global preconditioner

of Bramble et al. [36] and furthermore it is characterized by a simpler algebraic structure and is thus well
suited for parallel implementations.
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As far as the local part is concerned, let us decompose the U space in a set of p subspaces

U ¼
Xp
i¼1

Ui; ð37Þ

each of which with dimension qi (qi 6 ns), and let Ri be the canonical point wise restriction operator of the

nodal values defined on Ui. Its transpose RT
i prolongates the functional values in Ui to the space U. The

prolongation effectively corresponds to extend by zeros ns � qi values. A general local preconditioner can be

expressed as follows:

Mloc ¼
Xp
i¼1

RT
i A

�1
i Ri; ð38Þ

in which Ai ¼ RiSR
T
i . As before, depending on the choice of the subspace Ui several local preconditioners

can be built.

Similarly to Bramble et al. [36], we build a local edge preconditioner associating each subspace Ui to

each edge set _Ek and each vertex set Vl (i.e. p ¼ ne þ nv):

Mloc ¼ ME ¼
Xne
k¼1

RT
kA

�1
k Rk þ

Xnv
l¼1

RT
l A

�1
l Rl: ð39Þ

Such a preconditioner is the well-known Block Jacobi and it is therefore efficiently parallelizable; it ac-

counts for the interaction among all nodes belonging to the same edge interface [38]. The last term of the

r.h.s. of (39) corresponds to a simple diagonal scaling at the equations associated to the vertices Vl. The
major shortcoming of such a local preconditioner relies in its impossibility to manage nodes belonging to all
those edges which converge into a single vertex.

In order to overcome the above deficiency let us associate each subspace Ui to the enlarged edge set Ek,

and build the vertex–edge preconditioner

Mloc ¼ MVE ¼
Xne
k¼1

RT
kA

�1
k Rk: ð40Þ

Such a preconditioner shares similarities with the Vertex-Space (VS) preconditioner introduced by Smith

[35] in the context of Finite Element methods, and by Casarin [38] and Pavarino and Widlund [25] in the

context of spectral element discretizations. Unlike Smith who considers in an additive way the effects of

both vertices and edges, we merge them into a single subspace.

Let us simply remark that, similarly to the residual construction in the PCG procedure, both the local

and global components of M are gathered through a sum of local matrix–matrix products [37].

In the next section, in the framework of the weak-Legendre multi-domain discretization, we compare the
performances of the Point Jacobi, Block Jacobi preconditioners and the following additive two level pre-

conditioners:

MES ¼ Mglob þME; MVS ¼ Mglob þMVE ð41Þ

with those of PDM.

The PDM provides a solution that approximates the exact one with the spectral accuracy. Moreover,

owing to the piecewise-polynomial well conditioned basis used in the Galerkin formulation of the interface

Steklov–Poincar�e equation, it leads to a linear system whose coefficients matrix is symmetric, with con-

dition number independent on the degree of the polynomials and mildly dependent on the number the

subdomains [19].
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5. Results

Hereafter we present numerical results for three test problems which clearly demonstrate the potential of
the method compared to [19]. We have carefully attempted to objectively evaluate the performances of the

methods reporting, whenever possible, details concerning the implementations. As anticipated in Section 2

the emphasis of the paper is centered on the elliptic kernel; however, and for sake of completeness, a few

results are also given for the Navier–Stokes equations.
5.1. Elliptic equations

As already mentioned the elliptic kernel (of Helmholtz and Poisson type) constitutes the core of the

Navier–Stokes solver; it is thus natural that we first concentrate on elliptic problems arising from the setup

of practical fluid dynamics interest. We have already discussed the fact that the disparity in length scales

characterizing many, if not all of the above processes, requires adequate mesh resolution, a task that is

more easily accomplished through a proper control of the number of subdomains and the polynomial
degree of the spectral approximation. Thus we have investigated the effects of both procedures, separately,

so that merits and drawbacks of the available methods could be more clearly highlighted.

5.1.1. The isotropic case

In this subsection, we present some results concerning the solution of the Helmholtz equation

�Duþ �u ¼ f in X ¼ ½0; 1� � ½0; 1�; ð42Þ

with � ¼ 1, and

f ¼ exþy ½ð8p2 � 1Þ cosð2pxÞ cosð2pyÞ þ 4p sinð2pðxþ yÞÞ� ð43Þ

for which the analytic solution

uðx; yÞ ¼ exþy cosð2pxÞ cosð2pyÞ ð44Þ

exists.

We have considered both Dirichlet and Neumann boundary conditions of either homogeneous or in-

homogeneous type; however, for sake of brevity and in light of the fact that the achievements of the study

are not affected by the kind of boundary condition adopted, we shall present a systematic comparison of the

performances of several elliptic solvers for a single set of boundary conditions (of inhomogeneous Dirichlet
type). The domain X is split in Md equally sized subdomains so that the number of subdomains in the x and
y direction equals

ffiffiffiffiffiffi
Md

p
. In addition the polynomial degree of the approximation is such that Nx ¼ Ny ¼ N .

Note that the number of internal cross points is considerable and grows like ð
ffiffiffiffiffiffi
Md

p
� 1Þ2.

Before all let us demonstrate that the error is exponentially decaying when the number of Legendre

modes is increased.

In Table 1 we have reported the H1 norm of the error for several ðN ;MdÞ pairs (46N 6 10 and

46Md 6 121). As expected the error is squared (or more) when the number of modes N is doubled.

It is straightforward to verify that the rate of convergence with Md is algebraic (power law) with an
exponent that increases from 1.96 to 3.97 when N is varied between 4 and 8. We remark that within three

significant digits the error looks to decay like � M�N=2
d .

Fig. 1 shows the condition number j versus both the number of Legendre modes N (forMd ¼ 25) and the

number of subdomains Md (for N ¼ 6). The test matrix investigated is actually larger, with N and Md

ranging from 4 to 10, and 4 to 121, respectively; however, for sake of brevity only two cases are presented;

data can be made available to potentially interested readers. Let us begin observing that the growth of j of



Table 1

H1 norm of the error for isotropic model problem

Md N

4 6 8 10

4 3.13� 10�1 2.75� 10�3 1.16� 10�5 5.38� 10�8

9 6.79� 10�2 4.07� 10�4 1.41� 10�6 3.14� 10�9

16 2.19� 10�2 7.41� 10�5 1.47� 10�7 1.91� 10�10

25 9.14� 10�3 1.97� 10�5 2.51� 10�8 2.11� 10�11

64 1.45� 10�3 1.18� 10�6 5.97� 10�10 7.69� 10�13

100 6.04� 10�4 3.16� 10�7 1.00� 10�10 1.04� 10�12

121 4.15� 10�4 1.79� 10�7 4.70� 10�11 8.38� 10�13
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Fig. 1. Condition number versus the number of Legendre modes for Md ¼ 25 (left) and versus the number of subdomains for N ¼ 6

(right); isotropic model problem.
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the unpreconditioned (NP) Schur matrix is practically linear both with the number of subdomains Md and

Legendre modes N . This is a consequence of the moderate number of points N ; in fact increasing N up to 40

(Md ¼ 4, results not shown herein) we recover the quadratic dependence of [33]. There are no appreciable

improvements with the PJ preconditioner.

This is unfortunate given the very modest computational overhead required to build (and store) the PJ

preconditioner. We are not aware of any general estimate of the functional dependence of j with both N
and Md , but, in view of the appealing behavior of the VS preconditioner we conjecture that the lack of
transmission information in presence of numerous cross points among subdomains is the main reason of

the poor performance of this and other local preconditioners.

Moving on to the performance of the block Jacobi preconditioner, we note that the rate of increase of j
with N , in accordance with the theoretical estimates of Casarin [38], is less than linear. Conversely j grows

linearly withMd . There is a considerable improvement, instead, with the ES preconditioner; not only are the

magnitudes of j reduced, but, most important, there is a clear tendency towards an asymptotic value when

the number of subdomains is increased.

The main difference between the ES and VS preconditioners is an additional flattening of the condition
number with Md and a reduction in the ‘‘asymptotic value’’. The growth of j with N appears to closely

follow the theoretical estimates of [25,26] (j6 ð1þ logðNÞÞ2), although a significantly larger N would be

needed to clearly ascertain this matter.
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Also, the independence of the condition number upon the number of subdomains is similar to the

one documented by numerical experiments in [38]. The PDM shows instead a linear growth with Md .

We note that the well conditioned basis yielding a convergence rate independent of N prove effective
also with Md , since the VS algorithm required as many as 70 subdomains solves to overwhelm the

PDM when N ¼ 10 (results not shown herein). However, when N ¼ 6 the break-even point reduces to

Md ¼ 40. Thus while the PDM is optimal with respect to the number of Legendre modes N and mildly

dependent upon the number of subdomains Md , the opposite is true for the vertex space algorithm. As

concerns the optimal bound of the overlapping Schwarz method with respect to both Md and N de-

rived in [27], let us observe that the generous overlap needed to achieve the above theoretical estimate

implies a larger computational cost compared to both the PDM and the two level preconditioners.

As a final remark we wish to underline the fact that, in the isotropic case, the condition numbers are all
comparable and moderate, i.e. Oð102Þ. Thus, a direct solution procedure [39] is possible when

Md � N < Oð104Þ. Indeed for elliptic problems with repeated right-hand sides and constant �, it is recom-

mendable to compute and store the LU factors. For three-dimensional problems the situation is more

involved because of the storage constraints associated with the Fourier expansion (we have to store Nz=2
operators, since the Helmholtz coefficient � depends on the Fourier mode).

Although the above results seem to suggest a substantial equivalence among the different proce-

dures, we shall show in the next section that the presence of anisotropy may drastically change the

scenario.
5.1.2. The anisotropic case

In the previous section we have investigated the effects of both the number of subdomains and Legendre

modes on the condition of the algebraic system (32) for a model problem. In particular the number of

subdomains was increased in an isotropic fashion, i.e. at each refinement stage the size of the corresponding

elements differed by a scaling factor solely. This is the exception rather than the rule in fluid dynamics

applications. Thus in this section we have concentrated on an anisotropic geometric configuration which is

of relevance in a practical engineering problem.
The computational domain is representative of a rib roughened channel used as a cooling device inside

the nozzle guide vanes of the last generation gas turbines. As for the previous model problem we have

solved Eq. (42) with � ¼ 1 and the source term f given by

f ¼ 2p
Lx

� �2
"

þ 2p
Ly

� �2

þ 1

#
cos

2px
Lx

� �
cos

2py
Ly

� �
; ð45Þ

so that the analytical solution is

uðx; yÞ ¼ cos
2p
Lx

x
� �

cos
2p
Ly

y
� �

: ð46Þ

The computational domain consists of a square rib ½0; ‘� � ½0; ‘� with ‘ ¼ 0:6 placed at the lower wall of a
square channel ½0; L� � ½0; L� with L ¼ 6:0, and thus L=‘ ¼ 10.

We have considered four different partitions of the physical domain X with increasing number of sub-

domains (viz. Md ¼ 5, 22, 51, 92); the sizes of the subdomains were adjusted so to enhance the wall res-

olution (see Fig. 2). Note that the anisotropy associated to the above domain partitioning expressed in

terms of the maximum and minimum aspect ratios over the subdomains and summarized in Table 2 is

considerable. For each of these four configurations we have increased the polynomial degree of the ap-

proximation from 4 to 14 (N ¼ 4, 6, 8, 10, 12, 14). As before Nx ¼ Ny ¼ N .
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Table 3 reports the condition number of the unpreconditioned system for the four configurations de-

scribed above, as a function of the Legendre modes N . The almost linear growth of j with N is confirmed

also in presence of considerable anisotropies.
We note that the effect of the anisotropy in terms of augmented spreading of the maximum to minimum

eigenvalue ratio is considerable so that when Md is Oð100Þ, j becomes Oð104Þ (to be compared with the

corresponding values of the isotropic cases).
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Fig. 2. Subdomain partition for anisotropic model problem; shown is one half of the computational domain: (a) Md ¼ 5, (b) Md ¼ 22,

(c) Md ¼ 51, (d) Md ¼ 92.



Table 2

Maximum and minimum aspect ratios for anisotropic model problem

Total number of subdomains 5 22 51 92

Max. aspect ratio 4.50 17.0 68.0 272

Min. aspect ratio 1.1� 10�1 2.8� 10�2 7.1� 10�3 1.8� 10�3

Min. wall normal distance 1.15� 10�1 3.05� 10�3 8.13� 10�4 2.00� 10�4
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Table 4, reporting the condition number of the point Jacobi preconditioner, shows that its efficiency is

remarkable. In fact not only is j more than halved for all values of N when Md ¼ 51 and Md ¼ 92, but in

certain cases it even proves superior compared to the PDM.
Moving from the point version of the preconditioner to the block one determines significant improve-

ments as evident from Table 5. This is interesting since it is the highest level preconditioner with local, on a

subdomain basis, characteristics which is an appreciable feature in view of parallel applications.

Tables 6 and 7 report the performances of the ES and VS algorithms. There is a fair improvement,

compared to the BJ preconditioner which in some instances (i.e. Md ¼ 92 and N ¼ 14) may add up to 50%.

For the most challenging case, viz. Md ¼ 92, the VS seems to have reached a remarkable, nearly inde-

pendent from N behavior. All of the above three mentioned methods are clearly superior to what we

consider our challenger, the PDM, whose performances are illustrated in Table 8. Let us first remark that in
presence of anisotropy the PDM does not show an optimal behavior neither with Md , nor with N (!). This is

more evident from Fig. 3 where the data discussed above are compared on a graphic basis as a function of

N for Md ¼ 51 (left figure), and as a function of Md for N ¼ 8 (right figure).

We wish to conclude this section drawing the reader’s attention on the almost two order of magnitudes

reduction of j attainable with the VS preconditioner for an anisotropic configuration of engineering rel-

evance.
Table 3

Condition number of the non-pre-conditioned (NP) Schur complement matrix; anisotropic model problem

Md N

4 6 8 10 12 14

5 7.51� 100 1.42� 101 2.06� 101 2.74� 101 3.44� 101 4.16� 101

22 1.52� 102 2.58� 102 3.68� 102 4.81� 102 5.96� 102 7.12� 102

51 1.50 � 103 2.60� 103 3.73� 103 4.87� 103 6.02� 103 7.17� 103

92 1.07 � 104 1.85� 104 2.66� 104 3.48� 104 4.31� 104 5.13� 104

Table 4

Condition number of the point Jacobi (PJ) pre-conditioned Schur complement matrix; anisotropic model problem

Md N

4 6 8 10 12 14

5 7.14� 100 1.35� 101 1.92� 101 2.47� 101 3.00� 101 3.51� 101

22 1.08� 102 1.73� 102 2.21� 102 2.62� 102 2.99� 102 3.33� 102

51 5.95� 102 1.06� 103 1.39� 103 1.64� 103 1.84� 103 2.00� 103

92 2.75� 103 5.13� 103 6.99� 103 8.48� 103 9.71� 103 1.07� 104



Table 8

Condition number of the PDM; anisotropic model problem

Md N

4 6 8 10 12 14

5 7.83� 100 1.11� 101 1.29� 101 1.40� 101 1.47� 101 1.52� 101

22 1.28� 102 1.63� 102 1.75� 102 1.81� 102 1.85� 102 1.88� 102

51 9.36� 102 1.19� 103 1.28� 103 1.31� 103 1.33� 103 1.34� 103

92 5.69� 103 7.39� 103 8.15� 103 8.57� 103 8.83� 103 8.99� 103

Table 7

Condition number of the vertex space (VS) pre-conditioned Schur complement matrix; anisotropic model problem

Md N

4 6 8 10 12 14

5 8.26� 100 8.74� 100 1.21� 101 1.53� 101 1.82� 101 2.09� 101

22 7.10� 101 7.43� 101 7.82� 101 8.16� 101 8.46� 101 8.74� 101

51 3.41� 102 3.34� 102 3.48� 102 3.59� 102 3.67� 102 3.73� 102

92 1.46� 103 1.41� 103 1.47� 103 1.52� 103 1.56� 103 1.59� 103

Table 6

Condition number of the edge space (ES) pre-conditioned Schur complement matrix; anisotropic model problem

Md N

4 6 8 10 12 14

5 1.03� 101 1.73� 101 2.33� 101 2.83� 101 3.27� 101 3.67� 101

22 6.56� 101 7.37� 101 9.54� 101 1.17� 102 1.35� 102 1.49� 102

51 3.33� 102 3.77� 102 4.04� 102 4.22� 102 4.35� 102 4.48� 102

92 1.47� 103 1.71� 103 1.88� 103 1.99� 103 2.08� 103 2.14� 103

Table 5

Condition number of the block Jacobi (BJ) pre-conditioned Schur complement matrix; anisotropic model problem

Md N

4 6 8 10 12 14

5 5.42� 100 8.33� 100 1.09� 101 1.31� 101 1.51� 101 1.70� 101

22 6.69� 101 8.08� 101 9.02� 101 9.82� 101 1.05� 102 1.11� 102

51 3.63� 102 4.72� 102 5.20� 102 5.46� 102 5.63� 102 5.77� 102

92 1.67� 103 2.26� 103 2.56� 103 2.74� 103 2.85� 103 2.93� 103
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5.2. Direct and large eddy simulations of turbulent channel flow

This section deals with DNS and LES of fully developed turbulent channel flow at a Reynolds number of

180, based on friction velocity us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
and half channel height h, sw being the wall shear stress and q

the fluid density. The idea is to validate the ability of the method in dealing with highly anisotropic sub-

domains, i.e. with aspect ratios of order 100, which are necessary to fully resolve the persistent and energetic
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coherent near wall structures responsible for most of the turbulence production. The geometric environ-

ment has been purposely simplified to reduce the computational costs associated with three-dimensional

unsteady direct simulations over bluff bodies. However, the physical domain partitioning strategy was

devised in order to both maintain a significant number of interior corner points (whose presence affects to a

great deal the elliptic kernel efficiency), and preserve the correct near wall resolution.
This model problem has received considerable attention over the past two decades, and many progresses

in the understanding of wall turbulence have been achieved thanks to the numerical and experimental

contributions. Thus, reference numerical and experimental data are available. Our DNS shall be compared

with the data of Moser et al. [4] who have slightly changed the setup of the first celebrated channel flow

DNS of Kim et al. [1]. The LES, which employed the widely used dynamic model of Germano et al. [40], as

modified by Lilly [41], has been designed to have considerable more grid anisotropy compared to the DNS.

Specifically, the normal to the wall resolution has been left unchanged, while the streamwise and spanwise

resolutions were, roughly speaking, halved. The numerical method pertaining to the DNS case has been
described in Section 2; the LES equations differ from the DNS ones for the presence of a highly non-linear

elliptic term related to the subgrid stress tensor which is lumped in the non-linear operator N and treated

explicitly, for sake of simplicity.

The channel size is identical to the one of Moser et al. [4], viz. 4ph� 2h� 2p in the streamwise, normal to

the wall and spanwise directions, respectively. Those dimensions were demonstrated sufficient for the flow

to be uncorrelated at the largest separation distance in the two homogeneous directions [4]. The DNS and

LES resolutions are detailed in inner coordinates in Table 9. The normal to the wall subdomains parti-

tioning strategy has been designed to enhance the resolution of the turbulent coherent wall structures, while
uniform streamwise subdomains arrangement has been adopted. Present resolution is comparable to the

one of reference [4]. The Navier–Stokes results were obtained on a Linux Box SMP dual PIII 750 MHZ

machine, with a code written in f90.

As before, Table 10 details the condition number and the iterations required to converge a single

spanwise mode (k ¼ 0) of the Helmholtz problem arising from the solution of the streamwise velocity

component. Compared are the performance of the VS and the PDM algorithm for both DNS and LES grid

systems. The high anisotropy is found to play an important role, since the VS preconditioner always

overwhelms the PDM in agreement with the results of Tables 7 and 8.



Table 10

Conjugate gradient iterations and condition numbers for elliptic kernel (turbulent channel flow)

LES DNS

Niter j Niter j

PDM [19] 136 174.20 76 56.61

VS preconditioner 82 50.98 54 40.62
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Fig. 4. Velocity profiles (a) and turbulence intensities (b) and (c); — Moser et al. [4]; present results: - - - DNS, � � � LES.

Table 9

Grids details for DNS and LES of turbulent channel flow

DNS LES

Md 16� 8 6� 8

N 12 12

Nz 128 64

Md � N � N � Nz 2.4� 106 4.4� 105

Max. aspect ratio 16.7 44.4

Dxþmin 3.83 9.78

Dxþmax 26.98 69.87

Dyþmin 0.23 0.22

Dyþmax 10.79 10.48

Dzþ 5.9 11.47
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Fig. 5. Equilibrium turbulent channel flow; instantaneous velocity fluctuations superposed to spanwise vorticity shaded contours in an

x–y plane.
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The data are obtained processing 50 nearly independent fields separated in time by 0:1tþ, where

tþ ¼ tus=h. The time steps are Dtþ ¼ 0:09� 10�3 and 0:15� 10�3, for the DNS and LES, respectively. The

initial velocity field has been created superposing to a logarithmic distribution random noise with a pre-

scribed standard deviation. The steady state is identified by a constant time averaged wall shear stress, and

by a quasi-periodic turbulent kinetic energy.

Fig. 4 compares the present DNS and LES results with the reference DNS data of Moser et al. [4]

obtained with a spectral single domain Chebyshev–Fourier–Fourier solver. The agreement between the two

DNS calculations is, as expected, very good despite the slightly different resolutions both in wall normal
and streamwise directions. Likewise the LES data agree well with the DNS distributions. We recall that,

thanks to the flexibility of the multi-domain solver, the wall layer can be easily resolved, without increasing

remarkably the computational cost.

In Fig. 5 an instantaneous snapshot of the spanwise vorticity fluctuations, obtained processing one of the

DNS data set, is shown; superposed are the vectors of the fluctuating velocity components (i.e. time and

space averaged values have been subtracted from instantaneous values). The spatial coordinates are rep-

resented in terms of wall values. The smoothness of the vorticity field in regions of high instantaneous shear

is a clear indication that all turbulent scales are properly resolved.
6. Conclusions

We have presented a preconditioned multi-domain algorithm based on the iterative solution of the Schur

complement matrix and applied it to the elliptic kernels arising from the spectrally collocated discretization

of the incompressible Navier–Stokes equations in three space dimensions with one homogeneous direction.

The technique allows for efficient numerical solutions of the operators in complex geometries consisting of a
collection of non-overlapping rectangular subdomains. Both single and two level preconditioners are

considered in simple and complex geometries characterized by remarkable anisotropies. While the former

prove reasonably effective in the isotropic model problem, the latter are shown to be necessary whenever the

subdomain aspect ratios are large. More specifically and with reference to the two level preconditioners,
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both edge and vertex space algorithms prove effective in decreasing the condition number of the original

system, so much that, for sufficiently large number of subdomains they outperform the PDM.

The method is shown to be nearly optimal in terms of asymptotic condition number behavior in a double
path of refinement strategy, i.e. whenever both the number of Legendre modes and the number of sub-

domains are significantly increased. Therefore, there is little degradation of the performance when the

number of interior corners is strongly increased.

The whole procedure is demonstrated to be particularly well suited for engineering applications in the

fields of direct and large eddy simulations of turbulence.
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